本发明提供了一种基于高光谱的苹果叶片含氮量检测方法,包括以下步骤:步骤1,对苹果生长发育的四个时期的叶片进行采集并进行光谱扫描;步骤2,对光谱数据展开特征波长分析并提取特征向量;步骤3,依据GBDT算法搭建机器学习反演模型,将步骤2中提取出的特征向量作为输入矢量导入反演模型中;步骤4,使用交叉验证优化反演模型参数;步骤5,用优化完成后的反演模型对苹果叶片氮含量进行检测。本发明的苹果叶片含氮量检测方法更准确,验证了特征波长提取方法的有效性,并为高光谱无损检测技术在苹果树营养元素含量快速检测和生长发育态势实时监测等方面的应用提供参考依据。
声明:
“基于高光谱的苹果叶片含氮量检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)