本发明公开了一种农田土壤反应动力学过程模型建模方法,采用水动力学模型和化学反应动力学模型的耦合模型描述农田土壤反应动力学过程,预测溶质浓度分布,通过迭代集合卡尔曼滤波技术修正耦合模型参数,将基于高斯过程回归的机器学习算法顺序性集成到数据同化框架中,用以估计耦合模型结构误差,为数据同化提供更为合理的先验值,从而减轻参数补偿效应,提高耦合模型的预测能力。本方法解决了农田土壤反应动力学数据同化计算中难以解决且不容忽视的模型结构误差,不需要对模型误差的先验分布做出任何实质性假设,避免了同化过程中参数过度拟合。
声明:
“农田土壤反应动力学过程模型建模方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)