本发明公开了一种基于对比学习的分子图表示学习方法,包括:获取每个分子的分子指纹表示,计算每两个分子指纹之间的相似度;收集全量的化学官能团信息,为分子中的每个原子匹配对应的官能团;用异构图对分子图建模;利用结构感知分子编码器中的RGCN编码分子中每个原子的表示及其所属官能团的表示,通过聚合函数将分子映射到特征空间,得到具有结构感知的特征表示;根据分子之间的指纹相似度,选取正、负样本,在特征空间中进行对比学习;在大样本分子数据集上利用对比学习的方法进行训练,得到具有结构感知的分子编码器,应用于下游分子属性的预测任务。本发明有助于捕捉更丰富的分子结构信息,解决分子属性预测的问题。
声明:
“基于对比学习的分子图表示学习方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)