本发明涉及互联网信息技术领域,尤其涉及一种基于深度学习的全局视野网络系统的解释方法。本发明方法对全局视野情况下基于深度学习的计算机网络系统的决策进行因果性解释与转换。首先采用深度强化学习的方法对原网络系统进行训练,在完成原有基于深度学习的系统训练后,对产生的全局配置结果通过超图的方式进行建模,并分析超图中关键的点‑超边连接,为每一个点‑超边连接对最终全局配置结果的影响力打分,使网络管理员理解决策中关键的组成部分。本方法极大地降低了原基于深度学习的全局视野网络系统的理解难度,便于网络管理员对决策过程进行理解。将本解释方法部署于实际系统上时,有助于网络管理员理解并纠错原全局视野网络系统的决策过程。
声明:
“基于深度学习的全局视野网络系统的解释方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)