本发明涉及一种基于变论域模糊规则迭代学习的玻璃窑炉空燃比调整方法,属于先进制造、自动化和信息领域,其特征在于,首先建立数据驱动的烟气含氧量指标预报模型,输入变量为空燃比,输出变量为烟气含氧量。同时,在分析玻璃窑炉燃烧过程化学反应机理的基础上,将燃料热值作为输入,建立用于计算空燃比理论值的机理模型,该机理模型所获得的空燃比理论值被用于限定上述数据驱动的烟气含氧量指标预报模型的输入值。在烟气含氧量指标预报的基础上,提出一种基于变论域模糊规则迭代学习的空燃比调整方法,且提出一种约束满足和声搜索算法对变论域模糊规则进行迭代学习。将本发明应用于玻璃生产过程可有效改善窑炉燃烧状况。
声明:
“基于变论域模糊规则迭代学习的玻璃窑炉空燃比调整方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)