本申请属于无人机智能控制领域,为一种基于细粒度重复策略的无人机机动飞行控制方法,基于无人机气动力参数构建全量六自由度模型和飞行控制率模块,用于模拟飞行控制环境,而后通过建立马尔科夫决策过程来分析各个控制指令以及对应的奖惩函数,而后通过DDPG算法和细粒度策略网络的结合形成各个控制指令与时间相对应的集合,对无人机进行控制。与传统机动控制器相比较不需要精确的线性化控制建模,能够生成连续的机动控制指令,不存在控制器切换而产生的指令反复跳变等问题。与经典的深度强化学习算法相比,该方法生成的机动飞行控制指令更加平滑,减少飞行任务中的指令有害切换次数,进而能够加快深度强化学习算法的训练速度。
声明:
“基于细粒度重复策略的无人机机动飞行控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)