本公开提供了一种基于深度确定性策略的云资源自适应配置方法及系统,包括以下步骤:基于云虚拟机集群中的场景信息,构建MAPE自主控制循环参考模型,对所构建的模型进行参数的初始化设置;通过监视器收集并记录云资源配置中的各项参数指标;利用ARIMA模型分析时间序列,进行下一时间间隔工作负载的预测;预测下一时间间隔虚拟机的负载情况,根据设定阈值提前调整虚拟机的数量以实现云计算的垂直缩放;基于DDPG算法进行云资源的分配,给用户分配匹配任务请求的虚拟机。基于自主计算、预测技术和深度强化学习进行云资源的自适应配置,对未来资源需求量进行预测,帮助SaaS供应商获得云应用程序执行过程中最大化利润并保证客户满意度。
声明:
“基于深度确定性策略的云资源自适应配置方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)