本发明涉及一种基于多维奖励Q学习的模型预测加权因子动态调整方法,属于自动驾驶车辆轨迹跟踪控制领域。解决了采用模型预测控制原理设计轨迹跟踪控制器时对加权因子的选取不当会降低自动驾驶车辆轨迹跟踪稳定性和精确性以及行驶安全性的问题。本发明通过强化学习中Q学习方法,训练了加权因子最优调整策略,可实时动态调整模型预测轨迹跟踪控制器的加权因子,从而实时优化自动驾驶车辆的轨迹跟踪性能,以减少在每个采样时刻下车辆实际位置与预期轨迹之间的误差,提高自动驾驶车辆的轨迹跟踪精度和行驶稳定性、舒适性。
声明:
“基于多维奖励Q学习的模型预测加权因子动态调整方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)