本发明属于数据处理技术领域,公开了一种网络流量预测数据预处理阶段的参数最优化方法及系统,网络流量预测数据预处理阶段的参数最优化方法包括:对数据集进行改进策略上的Q‑Learning强化学习预处理;进行基于流程压缩的快速估值网络模型的构建;进行基于混合精度的模型训练;进行基于改进Q‑Learning的最优化参数搜索。本发明提出了基于流程压缩的快速估值网络模型,基于流量预测模型出发,通过省略原模型中的预处理步骤并降低预测模型的训练代数的策略,构建能够用于快速估算回报值的网络模型;提出基于混合精度的模型训练流程,通过压缩数据尾款加快算法的计算性能,大幅度的提高了搜索最优化非空值率参数的速度。
声明:
“网络流量预测数据预处理阶段的参数最优化方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)