本申请实施例公开了一种基于Q‑learning的负荷综合预测方法和相关设备,方法包括:获取影响负荷的若干组基础预测参数集,并对其进行标幺化处理和离散化处理,作为环境状态;获取若干种负荷预测方法,并对其权重进行离散化处理,作为动作空间;将负荷预测值和负荷实际值的平方根偏差作为回报函数;根据环境状态、动作空间和回报函数构建预测智能体;基于Q‑learning对预测智能体进行训练;将进行标幺化处理和离散化处理后基础参数集的输入到已训练收敛的预测智能体中,进行负荷预测。通过将Q强化学习应用于负荷综合预测中,设计了环境状态、动作空间和回报函数,使得所选择预测方法和权重值均可以随基础预测参数而改变,解决了现有的单个预测方法适应性差问题。
声明:
“基于Q-learning的负荷综合预测方法和相关设备” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)