本发明属于大规模电化学储能领域,具体说是一种基于机器学习的液流电池电堆最优操作条件预测方法。包括以下步骤:建立数据库;对数据库中的类型变量参数进行数值化和标准化处理;将参数变量组成多维特征向量,将电堆的功率成本和能量成本分别作为目标函数y,将多维特征向量及和目标函数y随机分成训练集和测试集;利用训练集中的参数数据训练电堆性能预测模型;使用测试集中的参数数据评价训练好的液流电池电堆性能预测模型,同时构建成本预测模型;利用成本预测模型对数据库内的材料和成本变量参数进行预测,并计算系统运行总成本。本发明通过少量的测试即可确定研发的每个液流电池电堆的最佳操作性价比区间以及最佳操作参数。
声明:
“基于机器学习的液流电池电堆最优操作条件预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)