本发明公开了一种基于自编码器和遗传算法的高维数据异常子空间检测方法。所提出的AEG模型包括两部分结构,第一部分是用神经网络构建稀疏自编码器,利用绝对正常的无标签数据迭代优化学习最佳的编码‑解码方案,将测试数据输入训练完善的稀疏自编码器中并基于重建误差得到数据点的异常分数,结合自动阈值检测高维数据的异常值。第二部分结合自适应遗传算法对稀疏自编码器检测到的异常数据集进行高维异常子空间搜索,从而实现异常点的异常子空间定位,对于得到的异常子空间特征可以投入进一步的分类训练。本发明实现了更加简单快速的异常过滤,提高了高维数据的异常值检测及异常子空间定位的效率,提高了异常现象的解释性。
声明:
“基于自编码器和遗传算法的高维数据异常子空间检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)