本发明公开了一种基于强化联邦学习的电力行业起重作业违章检测方法,该方法包括以下步骤:S1、使用联邦学习C,对A节点和B节点使用本地数据进行训练并得到模型;S2、将步骤S1中得到的模型输入强化学习模块,使用强化学习DQN进行模型融合,调整A节点和B节点模型的权值;S3、强化学习模块通过强化学习,生成强化融合模型;S4、联邦学习C中心节点使用强化融合模型采用加权平均来对A节点和B节点的模型进行模型融合;S5、将融合后的模型下发到A节点和B节点;S6、重复步骤S1到S5,直至模型训练完成。有益效果:使用强化学习保证联邦学习共同建模效果,选择优质节点共同建立模型,降低异构性问题的影响。
声明:
“基于强化联邦学习的电力行业起重作业违章检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)