本发明涉及一种基于规则融合强化学习的自动驾驶换道决策控制方法,包括:建立他车纵向运动控制模型及横向行为决策模型;配置高速公路驾驶环境,筛除不合理车流场景,构建自动驾驶决策训练场景;建立驾驶行为观测的状态空间、动作空间;搭建用于策略更新的深度学习网络;设计换道决策风险评估方法,建立决策的安全性评判机制;设置奖励函数;将安全性评判机制引入基于DDQN的深度学习网络;基于自动驾驶决策训练场景进行融合训练,修正决策出的危险动作,并设置两个存储经验池,结合奖励函数更新模型中目标价值网络的参数,训练后的模型用于自动驾驶换道决策。与现有技术相比,本发明在换道场景中具有更高的决策任务成功率、行驶效率以及安全性。
声明:
“基于规则融合强化学习的自动驾驶换道决策控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)