本发明公开了一种基于深度强化学习的越野车三维路径规划方法,构建一个基于价值的越野车三维路径规划的深度卷积神经网络模型,以最优动作价值函数为学习目标,构建随越野车移动的动态全局地图作为观测输入,设计综合考虑路程和能耗的奖励函数,根据目标距离设计深度强化学习的探索策略,最后结合探索策略和奖励函数对深度卷积神经网络模型进行端到端的训练,以使越野车从起点到终点的行驶过程中获得的奖励最大,实现越野车的三维路径规划。采用上述方法规划出的越野车三维路径,综合考虑了路程和能耗,在探索过程中可以兼顾方向性和随机性,为三维地图中的越野车规划出路程和能耗折中的节能路径。
声明:
“基于深度强化学习的越野车三维路径规划方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)