本发明公开了一种基于深度强化学习的自动驾驶智能车轨迹跟踪控制策略,针对智能车自动驾驶任务,根据深度确定性策略梯度(DDPG)算法中的“动作‑评论家”结构,采用“双动作”网络分别输出方向盘转角命令和车速命令,并设计“主评论家”网络用以指导“双动作”网络的更新过程,具体包括:将自动驾驶任务描述为马尔可夫决策过程:<s
t,a
t,R
t,s
t+1>;采用行为克隆算法对改进DDPG算法中的“双动作”网络进行初始化;对深度强化学习DDPG算法中的“评论家”网络进行预训练;设计包含多种驾驶场景的训练道路进行强化学习在线训练;设置新的道路对训练好的深度强化学习(DRL)模型进行测试。本发明通过模仿人学车过程设计控制策略,实现了智能车在简单道路环境下的自动驾驶。
声明:
“基于深度强化学习的自动驾驶智能车轨迹跟踪控制策略” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)