本发明公开一种基于强化学习的无人机传感器故障时容错控制方法,测定无人机各项物理常数,搭建无人机环境模拟器,在训练时随机设置传感器故障干扰无人机控制并使用DDPG算法训练无人机控制策略模型,逐步增加无人机故障种类并将稳定表现的策略收集到容错控制策略候选池中,在仿真环境随机故障测试后,得到最优的容错控制策略;在推理阶段,对于训练好的策略模型,基于策略网络输出交给无人机执行。本发明在仿真环境中模拟无人机不同的传感器故障组合,在策略与环境交互时,保证固定比例的无故障样本数据的存在,使得强化学习可以同时学习到传感器故障时和非故障时的飞行策略,使得无人机传感器故障时的容错控制更加鲁棒,高效。
声明:
“基于强化学习的无人机传感器故障时容错控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)