本发明公开了一种用于图像分割的新型深度强化学习算法,包括以下步骤:1)采集若干相关图像作为训练图像集,并且对其进行预处理,提取出包含目标区域的感兴趣区域;2)针对要分割图像的特点,建立深度强化学习所需的状态值,动作值以及奖赏值;3)构建合适的深度学习网络模型作为深度强化学习算法中的值网络和目标网络;4)在深度网络训练过程中,利用多因素自学习学习曲线对经验池和样本采样大小进行动态调整;5)完成网络的训练,对测试样本进行运动轨迹的预测,从而得到最终的图像的分割结果。本发明提出了一种用于图像分割的新型深度强化学习算法,通过构建合理的深度强化学习模型,并且对其经验池和样本采样大小进行合理改进,能够有效提高模型训练效率,获得较为精确的分割结果,具有较强的稳定性和应用性。
声明:
“用于图像分割的新型深度强化学习算法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)