本发明公开了一种基于深度强化学习的复杂网络局部破坏控制方法,解决了复杂网络在局部破坏状态下的集群维修问题。步骤如下:1根据局部破坏信息建立复杂网络“节点‑单元”集群的维修状态0‑1矩阵。2基于集群维修状态映射生成复杂网络邻接矩阵。3设计一个神经网络预测“节点‑单元”集群的先验维修状态转移概率和先验局部破坏控制策略价值。4构建局部破坏控制策略迭代体系,遍历局部破坏控制策略解空间,选择当前时刻全局最佳维修动作。5基于集群维修状态的变化更新复杂网络邻接矩阵,然后计算并检验复杂网络恢复程度。6由局部破坏控制策略迭代过程存储的一系列最佳维修动作生成一个完整的局部破坏控制策略。
声明:
“基于深度强化学习的复杂网络局部破坏控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)