本发明涉及模型学习领域,具体涉及一种无人驾驶场景下深度强化学习模型的可解释性方法及系统。该方法及装置选择合适的仿真环境以及适合的深度强化学习算法,通过训练得到收敛的强化学习模型,对强化学习模型输入无人驾驶场景下拍摄的图片,对图片进行特征的划分及进行特征影响力的量化分析,计算各个特征对模型决策的影响程度,并得到相应的差值矩阵,得到改进型网络模型。以至少解决现有技术不能精准分析图片各个特征对模型决策的影响的技术问题。
声明:
“无人驾驶场景下深度强化学习模型的可解释性方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)