本发明提供了基于大数据的电堆能耗分析预测系统,其从海量数据中提取出车内状态信息以及车外环境信息感知等与氢能源能耗相关的多种因素,基于一种强化学习的特征选择方法对这些相关因素进一步筛选,从而挖掘出影响氢燃料电堆能耗的重要特征,并结合基于GRU模型的循环神经网络实现对
氢燃料电池的能耗动态分析,预测电堆的能耗趋势,为后续进行加氢需求测算、生态轨迹规划和电池能量管理等奠定基础,对推广和普及氢燃料车辆具有重要意义。
声明:
“基于大数据的电堆能耗分析” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)