本发明公开一种基于强化学习的Android应用自动测试方法及系统,在测试过程中,自动测试工具自动运行Android APK,获取当前界面控件布局情况并推测出可执行交互事件,采用Q‑learning算法,交互事件第一次被探索到时会有一个初始价值,自动测试工具依据交互事件价值选择并执行交互事件。每次执行交互事件后都会产生一个奖赏对交互事件的价值进行更新。奖赏给定主要以新状态与过往状态的差异为判定标准。本发明引入神经网络对状态进行比较,可以判定两状态是否处在同一功能场景。基于该神经网络判定结果给定的奖赏,可以引导自动测试工具优先对Android应用中的各个场景进行探索,以此提升测试效率,同时发现更多代码中存在的缺陷。
声明:
“基于强化学习的Android应用自动测试方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)