本发明提供一种基于智能分析的海量数据样本增量分析方法,包括如下步骤:步骤1、利用原始训练数据集D学习出当前分类器C;步骤2、用当前分类器对未标注类别标签的新增训练集T进行分类,针对每一个未标记的新增训练样例,利用Q一学习算法计算其Q值,从T中选择有利于提高当前分类器精度的新增训练实例,并赋予其标签CP,添加到训练集D中;步骤3、利用新增样本修正分类器参数,直到新增训练集T中的全部实例加入训练集D中。本发明的有益效果是:利用强化学习中经典的Q学习来合理选择样本增量序列,削弱噪声数据的负面影响。
声明:
“基于智能分析的海量数据样本增量分析方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)