本公开实施例是关于一种基于多智能体深度强化学习的波束预测方法。该基于多智能体深度强化学习的波束预测方法包括:深度神经网络利用瞬时信道状态信息学习无线信道的关键传播特性;Q网络利用所述深度神经网络输出估计动作‑值函数,计算网络参数梯度,并让每个智能体依次做出下一次波束预测;利用所述Q网络输出参数更新所述深度神经网络权值,实现对动态用户的精准波束预测。本公开实施例利用深度神经网络获取多个能反映信道特征的关键值,使多天线(MIMO)系统的波束预测更符合动态用户信道的时变特性,提高波束切换成功率,减小大规模多天线(MIMO)系统的反馈开销,从而提高和速率。
声明:
“基于多智能体深度强化学习的波束预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)