公开了一种基于多源样本迁移强化学习的智能加工刀具磨损预测方法,它包括以下步骤:根据几种刀具的不同磨损曲线获取多个源任务及一个目标任务;初始化模型参数及最大迭代时间;检测当前刀具的磨损状态,对磨损数据进行特征提取及降维,构建加权极限学习机的训练样本集,并训练加权极限学习机;执行加工动作,观察当前刀具的磨损状态,计算各源任务和目标任务之间的状态相似度和回报相似度;计算源任务中各样本属于目标样本集的概率;获取任务相似度,并将固定个数的样本从每个源样本集迁移到目标样本集;利用基于加权极限学习机的Q学习机制更新Q值,并将新的刀具磨损数据添加到目标样本集中;构建粒子滤波模型的状态方程及观测方程。
声明:
“基于多源样本迁移强化学习的智能加工刀具磨损预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)