本发明公开了一种基于深度强化学习的人工智能胶囊内镜检查方法及系统,该方法包括:胶囊内镜采集胃腔环境的图像,提取图像的特征值;将图像特征值输入预先训练的深度强化学习模型中,得到可执行的最大价值动作;利用深度强化学习模型输出的最大价值动作,根据胶囊内镜的状态生成相应的控制指令,控制胶囊内镜在复杂的胃腔环境中进行自主运动;自主运动动作完成后,根据实际完成情况获取回报值;并判定胶囊内镜是否到达终点位置。本发明旨在通过训练,使胶囊内镜能在复杂的高度动态的胃腔环境中,作出正确的决策;能控制胶囊内镜在复杂的胃腔环境中进行自主运动,智能化地、高效地、不遗漏地实现对全胃的检查。
声明:
“基于深度强化学习的人工智能胶囊内镜检查方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)