本发明公开了一种基于强化学习和Transformer的电力缺陷识别方法,其步骤包括:1无人机航拍采集原始数据集,并通过深度卷积生成对抗网络增广数据集合;2使用强化学习模块提取图像特征搜索出前景区域;3通过Transformer模块对背景区域特征向量压缩并进一步进行特征提取,并最终经过全连接层获得最终预测结果。本发明利用深度学习实现了对电力缺陷区域的检测,从而减少了人力成本,且不受天气、背景等外部因素的影响,并提高了检测效率和检测精度。
声明:
“基于强化学习和Transformer的电力缺陷检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)