本发明涉及一种基于智能手机检测的石墨烯微电极制备方法及应用,属于生物传感技术领域。本发明设计与U盘式的电化学分析仪兼容的直插式三电极图案,结合激光诱导石墨烯(LIG)技术制备微型柔性石墨烯电极,使用PalmSens U盘式的电化学分析仪,结合智能手机检测,采用循环伏安法,用于抗坏血酸等小分子药物检测。所设计的石墨烯微电极可兼容于PalmSens U盘式的电化学分析仪,具有良好的稳定性和灵敏度,所构建的药物检测方法具有良好的重复性、精密度、选择性,可用于汗液、尿液等生物样品的检测,进一步推进便携式、绿色、低成本、智能药物检测。
本发明涉及一种基于深度强化学习的期货量化交易系统,包括:K线走势模块、策略回测模块、量化选股模块、风险监控模块、持仓控制模块、策略切换与商品切换模块、机器学习模块、期货策略库模块以及信号处理与实盘交易模块。本发明提出的一种基于深度强化学习的期货量化交易系统,提供机器学习模块,在量化选股阶段利用机器学习算法,筛选出优质期货商品,对运行的策略进行监控,训练强化学习模型对策略实现自动切换,也可以直接通过训练好的强化学习模型,直接对期货进行交易操作。
本发明公开了一种具有良好电化学性能的解开的氮掺杂碳纳米管衍生物及其制备方法。用溶液化学氧化法沿纵向解开竹节状的氮掺杂多壁碳纳米管,获得氮掺杂碳纳米管衍生物,通过控制解开程度,可获得半解开时具有异质结结构的毛虫状氮掺杂石墨烯/碳管复合材料和全解开时的氮掺杂石墨烯纳米带。利用解开的碳纳米管对玻碳电极进行修饰,经电化学性能测试表明,本发明获得的材料具有高的比表面积、更多的反应活性位点和更高的电子转移速率,这使得其在电化学领域,诸如电容器、锂电池、电催化以及电化学传感器等上具有广泛的应用前景。
本发明涉及了一种全固态有机电化学光晶体管及其制备方法。该有机电化学光晶体管采用底栅平面结构,器件从下往上依次是基底、固态电解质层、有源层、源漏电极和吸光层;其中固态电解质层采用聚合物离子凝胶电解质,并利用旋涂或刮涂工艺在基底上形成固态电解质层,从而实现全固态有机电化学光晶体管。本发明提供的全固态有机电化学光晶体管在低电压操作下实现了出色的光响应R和探测率D,同时全固态光晶体管的特性可有望进一步集成至先进电子及电路系统中,扩宽高性能电化学晶体管应用领域。该全固态有机电化学晶体管有望广泛用于光传感器、人工突触及大规模集成电路等领域。
本发明提供了一种基于图神经网络强化学习的电动汽车充电引导优化方法,包括如下步骤:步骤S1:电力‑交通融合网协同优化模型初始化;步骤S2:更新电动汽车充电负荷;步骤S3:根据epsilon‑Greedy算法和图神经网络强化学习算法生成ai,t;步骤S4:执行充电引导行为策略ai,t;步骤S5:计算图神经网络强化学习算法的奖励函数;步骤S6:部分观测马尔科夫决策过程的状态xi,t更新;步骤S7:将当前步的信息(xi,t,ai,t,ri,t,xi,t)存储于记忆单元D中;步骤S8:判断是否达到预定的时间Tend;若否,则执行(2)~(7);若是,则输出图神经网络强化学习算法参数和相应输出结果。应用本技术方案可实现有效地降低电动汽车充电总成本,实现电动汽车的有序充电以及电力系统协同优化调度。
本发明涉及一种强化学习和机器学习相结合的云软件服务资源分配方法。建立面向变化负载的管理操作决策模型。首先,使用强化学习方法,针对历史数据计算每一管理操作在不同环境、状态下的Q值;其次,使用机器学习方法,基于Q值预测模型,输入环境和状态,就能预测每一管理操作的Q值;最后,根据Q值预测模型,在运行时进行管理操作决策,通过反馈控制,逐步推理合适的资源分配方案。本发明方法使用在实际应用RUBiS中,结果显示:本发明方法能够提高云应用资源分配的有效性,管理操作决策的正确性达到92.3%,相比传统机器学习方法,资源分配效果提高约6%。
本实用新型涉及一种基于多辅助电极溶出伏安法的痕量金属离子检测装置,包括电脑工作站、电化学分析仪、四电极体系、转换开关、电化学检测池、磁力搅拌器,所述的电化学分析仪连接电脑工作站,所述四电极体系通过转换开关连接在电化学分析仪的三电极接线柱上,所述磁力搅拌器位于电化学检测池下方,通过磁子搅拌电化学检测池中溶液,该装置的最显著特点是将辅助电极设置为双电极,即辅助电极和附加辅助电极,再与工作电极、参比电极形成四电极体系,这样可以有效的解决辅助电极被污染的问题,改善了连续测定的重现性、稳定性及可靠性,便于自动化体系进行连续的测定。
本发明涉及一种基于强化学习算法的交易电量优化方法,包括如下步骤:S1、构建用电量预测模型和售电收益模型;S2、输入用户本月已用电量数据至用电量预测模型,得到用户本月用电预测量数据;S3、根据售电收益模型,构建基于强化学习算法的交易电量优化模型;S4、输入用户本月用电预测量数据至交易电量优化模型,得到使售电收益最大化的交易电量。
本发明提供了一种回文核酸纳米片超灵敏电化学生物传感器的制备方法。本发明基于使用回文探针引发的三维自组装DNA纳米结构,结合热稳定连接酶的高保真度和电化学测量的先天优势,设计了一种回文核酸纳米片超灵敏电化学生物传感器的制备方法,利用该制备方法制得的电化学生物传感器具有设计简单、通用性好、仪器便宜、测定特异性高和灵敏度高的优点。
本发明涉及一种基于强化学习的多径TCP传输调度方法。该方法研究多径TCP传输调度机制的特点,采用建立强化学习模型、训练模型、部署模型的方式对多径TCP传输调度进行控制,在训练完成的强化学习模型部署在发送端主机之后,能够准确的预测和调度传输中需要预留的数据包数目N。本发明相对传统的多径TCP调度方法,能够更加准确的预测传输调度中需要预留的数据包数目N,并且时间开销相对更小,多径TCP传输的数据包乱序度更低。
本发明涉及了一种基于流式微球技术检测霉菌毒素的方法,属于生物技术和分析化学领域。本发明以含有活性功能基团修饰表面的微球为载体,采用化学偶联法,将检测抗原交联于微球,通过依次与霉菌毒素竞争抗霉菌毒素抗体的免疫反应和荧光标记二抗的反应,形成“微球-检测抗原-抗体-二抗”的复合物,再采用流式细胞仪分析微球上二抗的荧光强度,建立基于流式微球的霉菌毒素检测方法。本发明技术涉及生物技术和分析化学领域,主要包括微球与检测抗原的化学偶联、免疫竞争反应及其在流式细胞仪上的分析检测方法,本方法具有灵敏度高、速度快,特异性强,重复性好等优点,可用于食品和农产品中霉菌毒素的分析检测。
本发明公开了一种简单快速检测苯胺的方法,包括如下步骤:a.纳米银溶液及苯胺标准溶液的制备;b.预混液的制备;c.化学发光分析检测及标准曲线的制作;d.测定待测液。本发明解决了目前化学分析检测苯胺使用多聚磷酸介质体系,因具有一定粘度的多聚磷酸,给操作带来不便的问题。本发明使用经典的鲁米诺化学发光分析体系,整个操作实验的条件较温和,易于操作,且完成在一均相的体系中,有利于自动化的分析操作;该方法的分析测试时间缩短为10分钟以内。发展的这种检测苯胺的方法具有简单、快速、灵敏的优点。
本发明涉及一种基于强化学习的多边缘协同负载均衡任务调度方法,一种基于强化学习的多边缘协同负载均衡任务调度方法,包括以下步骤:步骤S1:根据历史数据集,使用强化学习算法来评估不同系统状态下各调整操作的Q值;步骤S2:对步骤S1中构建Q值表中调整操作的Q值进行预处理,然后用机器学习算法训练一个Q值预测模型;步骤S3:每个边缘根据Q值预测模型独立并行地进行决策。本发明将强化学习和机器学习相结合结合,设计无线城域网中的多边缘协同负载均衡算法。每个边缘节点仅利用局部信息,便可独立进行本节点和相邻节点间的负载均衡调度,经过反馈控制和多边缘协同逐步寻找合适的负载均衡方案。所寻找的方案可以有效地减少任务的响应时间。
本发明涉及一种基于双螺杆空压机的燃料电池阴极化学计量数控制方法,包括以下步骤:步骤S1:构建燃料电池电化学输出特性模型、阴极流量模型、车辆动力学模型以及双螺杆空压机模型;步骤S2:构建调节燃料电池阴极化学计量数的比例积分增益控制器;步骤S3:将车速传感器测得的实时车速作为车辆动力学模型的输入,并计算出电池需求功率;步骤S4:根据得到的电池需求功率,由燃料电池电化学输出特性模型和阴极流量模型计算燃料电池反应所需的目标流量;步骤S5:将目标流量与流量传感器所测的双螺杆空压机实际输出流量的差值作为比例积分增益控制器的输入,并将比例积分增益控制器的输出量作为双螺杆空压机的控制电压,实现燃料电池阴极化学计量数的控制。
本发明公开的一种基于互联网信息采集识别技术的危险化学试剂存储柜设备,包括柜体所述柜体内设有动力腔,所述动力腔内含有自动开关锁机构,本发明结构简单,操作简便,本发明不仅可以对存取试剂的人员进行限制,而且可以将存取的人员脸相上传,同时记录每次试剂种类和重量的变化,将这些记录储存到网络上,以方便后期的检查,从而提高了危险化学试剂的安全性严谨性,不再害怕不法之徒盗取,方便内部人员实时监察以及后期查看存取记录,更加的规范,对危险化学试剂的存取严格把关,本发明,工作效率高,具有较高的一体化程度。
本发明提供一种毛细管电泳-热工作电极-安培检测装置及其热工作电极制作方法:装置包括高压分离系统、电化学检测池,检测池内设置有高压电源接地端,与电化学分析仪连接的辅助电极、参比电极和热工作电极,分离毛细管末端连接热工作电极的铂丝,铂丝上设有加热元件;电化学分析仪连接电脑工作站;热工作电极制作为:制作铂丝上加热回路、检测端、铂丝与分离毛细管连接端等。本发明将毛细管电泳、热工作电极、安培检测器连接起来形成一个整体的装置,扩大检测物质的范围,提高分离毛细管与电极对接的重现性、稳定性及可靠性;装置体积小,便于安放;能够有效地避免加热电流对电化学检测信号的干扰,电极制作简单,使用方便,稳定性好。
本发明属于电化学传感器领域,具体涉及一种基于氮化碳信号放大的光电化学传感器及其制备方法。本发明以g‑C3N4为光活性材料,以待测物质的适配体为生物识别元件,以Na2SO4溶液为电解液,以GaN为工作电极;将g‑C3N4和待测物质的适配体加入电解液中,与三电极系统一起构成基于氮化碳信号放大的光电化学传感器。该传感器操作简单,灵敏度高。
本实用新型公开了一种生物化学用取样装置,包括壳体,所述壳体顶部左侧的后端设置有电机,所述电机的输出端固定连接有齿轮,所述齿轮的右侧啮合有齿板,所述齿板的正面固定连接有刻度条,所述齿板的底部固定连接有筒板,所述筒板内腔的右侧设置有抽料管,所述壳体顶部的右侧固定连接有抽料泵,所述抽料泵的右侧固定连接有排料管。本实用新型通过壳体、电机、齿轮、齿板、刻度条、筒板、抽料泵、排料管、波纹管、抽料管、活动座、活动板、活动块、活动杆、滑套、弹簧、支撑板和取样筒的配合,解决了现有的取样装置不仅无法精准把握取样深度,而且取样时,取样管内容易掺杂不同深度的液体,导致检测结果不准确的问题。
本发明公开了一种温度控制毛细管电泳‑化学发光联用的接口及其制作方法,接口包括加热保温装置模块和流通池模块,加热保温装置模块包括内置加热片的加热保温套、加热片盖和流通池盖;流通池模块包括分离毛细管、反应毛细管、高压电极、发光试剂室;分离毛细管从流通池的左端插入,反应毛细管从流通池的右端插入;发光试剂室留有两个发光试剂入口,高压电极与发光试剂入口相邻;流通池内的分离毛细管横向穿过发光试剂室插入到反应毛细管中,两毛细管之间留有间隙;反应毛细管插入始端与发光试剂室相通;分离毛细管末端出口处的位置是检测区。本发明组装方便,操作简单,实现精准、实时控制接口温度,提高了实验的灵敏度、重现性和稳定性。
本发明公开一种基于双敏化结构的甲胎蛋白光电化学竞争免疫型传感器的制备及应用。该传感界面的构筑方法是以二氧化钛介晶作为探针基底并固定甲胎蛋白抗体(Ab),以硫化铋作为电极基底固定甲胎蛋白抗原,通过抗原与抗体之间的特异性结合构建出一种双敏化结构的传感器。将修饰有甲胎蛋白抗原的电极放入含有不同浓度游离抗原和一定量标记探针的混合溶液中,使游离的目标抗原与固定化抗原竞争结合标记探针。在光照条件下,结合了探针的电极就能产生一定强度的光电流,通过该双敏化结构实现对电流信号的放大。且随着游离目标物浓度的增加,固定化抗原结合探针的数量减少光电流强度也随之减小。基于该现象可建立起对于甲胎蛋白的光电分析方法。
本发明公开一种玉米赤霉烯酮的免标记型光电化学传感器的制备方法,该传感界面的构筑方法是利用纳米铜钴铁材料、聚赖氨酸以及纳米金红石型TiO2介观晶体作为构筑基元,并进而固定化玉米赤霉烯酮抗体(Ab);由于纳米铜钴铁的表面等离子效应及聚赖氨酸优良导电性,该传感界面能加快纳米金红石型TiO2介观晶体的光生电子转移速度并提高其光电流信号,同时聚赖氨酸含有丰富的氨基,有利于抗体的负载;当玉米赤霉烯酮与固定化的玉米赤霉烯酮抗体发生免疫反应,由于空间位阻效应,该传感界面的光电信号明显减弱。基于该现象,建立起的免标记型光电传感方法可实现对玉米赤霉烯酮浓度在1×10‑6 ng/mL–10 ng/mL范围内的高灵敏检测。
本发明公开了高灵敏H2S电致化学发光传感器的制备方法及其应用,所述方法是通过将一段含有富C的引物序列探针固定在金电极上,在Ag+作用下,形成C‑Ag‑C的发卡结构,当存在目标物H2S时,能与发卡结构中的Ag+结合,形成Ag2S并导致发卡结构打开,触发两种发卡结构(H1和H2)的引物探针发生HCR反应,在电极表面得到大量含有双链结构的DNA产物,Ru(phen)32+能够嵌入双链结构中产生ECL信号,进而实现对样品中的H2S高灵敏定量检测。
本发明公开一种基于MXenes和黑磷量子点增强的外泌体电致化学发光传感器。特点是BPQDs能够催化Ru(dcbpy)32+的氧化,作为共反应试剂与Ru(dcbpy)32+形成自增强的Ru(dcbpy)32+‑BPQDs体系,发射强的ECL信号。MXenes具有良好的导电性和大的比表面积,能够增加BPQDs和Ru(dcbpy)32+的负载量,进一步放大ECL信号。SiO2纳米星(SiO2 NUs)和1‑羧基‑3‑甲基咪唑氯化铵(ILs)作为传感基底,不仅能够加速电子的传递,还能固定大量的适体,该适体能够特异性识别EpCAM蛋白,捕获exosomes,接着,exosomes识别标记有CD63抗体的信号探针,构成夹心型传感器,实现了对exosomes的高灵敏检测。本文发明拓宽了MXenes和BPQDs在ECL领域的应用。
本发明公开了一种采用电极内部光照模式的光电化学光纤微电极的制备方法,所述光电性能光纤电极的结构被设计为三层,由内到外依次为光纤内层,导电膜层和光电材料层。其中光纤采用韧性好的塑料光纤,直径小于1.0 mm。导电层材料满足无色透明且导电性良好的条件,为光纤提供导电性。本发明公开的光电性能光纤电极具有相比于传统光电极而言非常小的尺寸,其仍然具有良好的光电响应。并且,光电极材料的光激发模式实现了创造性的转变,由外部光源激发转变为由光纤内部光源激发。这种使用内部光源的新模式,很好的规避了应用场景对于PEC光照波长的限制,扩大了光电材料的选择范围。本技术有望应用于生物体原位检测,环境样本连续监测等领域。
本发明涉及一种隐蔽通信系统中基于强化学习的波束扫描方法。具体地,在一个支持毫米波的隐蔽通信场景里,无人机作为发射机不知道监测者的确切位置,这种情况下,无人机采用多天线波束扫描的方法,在不同时隙中沿着不同的方向对地面上多个合法接收机进行波束形成传输。此时,发射机在一定程度上会产生信息泄露,为了避免被监测者检测到泄露的信息,需要优化波束扫描的波束数及发射功率,使其在满足隐蔽约束的条件下达到最大化平均吞吐量。为了提高发射机传输的准确性与高效性,本发明采用软动作‑评价(Soft Actor‑Critic,SAC)算法来约束发射功率和波束数量,引入最大化带熵的累计奖励,使平均吞吐量达到最大。
本发明涉及一种石墨烯纳米卷固化沙丁胺醇电化学检测传感器的制备方法,其方法包括以下步骤:1)将氧化石墨烯进行纯化;2)取纯化的氧化石墨烯,加入去离子水中,再加入硅溶胶和十六烷基三甲基氯化铵,进行两次超声分散;3)取SI@石墨烯溶液滴加水合肼,搅拌后得到SI@石墨烯纳米卷溶液;4)将SI@石墨烯纳米卷取出,室温下解冻;5)取SI@石墨烯纳米卷溶液滴加在玻碳电极上,真空干燥使胶粒吸附在玻碳电极上形成吸附胶膜;6)继续滴加沙丁胺醇抗体溶液,中速旋转涂膜均匀,然后在30℃条件下真空干燥5~8h,得到沙丁胺醇电化学传感器。本发明构建的传感器具有合成简单、成本降低等优势。
本发明公开了一种基于化学组装和循环伏安法制备纳米金表面增强活性基底的方法,通过采用3-氨基丙基-三甲氧基硅烷(APTMS)对氧化铟锡(ITO)导电玻璃表面进行化学修饰,使ITO导电玻璃表面键合氨基硅烷,然后将金种子沉积在ITO导电玻璃上,以循环伏安技术使种子生长,制得纳米金表面增强活性基底。该纳米金表面增强活性基底用于拉曼光谱检测,性能优良,制备工艺简单,成本低,有利于推广应用。
本发明公开一种基于TiO2介晶诱导的共振能量转移型电化学发光及对卵巢癌标记物的免疫传感方法,特点是基于锐钛矿TiO2介晶和Envision复合物,分别引入钌联吡啶及核/壳量子点作为能量供体/受体对。锐钛矿TiO2介晶不仅可以承载大量钌联吡啶,而且可以加速激发态钌联吡啶的产生从而促进核/壳状量子点的共振能量转移;富含辣根过氧化物酶的Envision复合物作为免疫传感平台可以承载大量信号探针,同时催化H2O2产生活性氧化物种,促进核/壳状量子点发光。ECL‑RET免疫传感器,具有灵敏度高、检测限低等优点,用于卵巢癌标记物,脂多糖刺激脂蛋白受体的检测,在早期卵巢癌诊断和监控方面具有较为重要的价值。
本发明公开了一种温度可控的基于切刻内切酶Nt.BstNBI和碱性磷酸酶的信号放大的电化学p53基因传感器的制备方法,包括金盘热电极、与目标p53序列互补的两端分别标记了生物素和巯基的捕获探针、标记了链霉亲和素的碱性磷酸酶和切刻内切酶Nt.BstNBI。当有p53存在时,与捕获探针杂交,之后诱导Nt.BstNBI进行切割,释放出目标物p53进行下一次杂交酶切循环,并通过对电极施加电流改变酶切温度以提高酶的活性,使酶切过程更快更彻底;酶切前后对电极进行检测时通过改变电极温度使ALP催化活性提高,放大酶切前后的峰电流差值,氧化峰电流的减小值与目标p53的浓度呈线性关系,实现对p53基因的高灵敏检测。
本发明公开一种基于NiFe2O4纳米管催化增强的卵巢癌标志物比率型电致化学发光传感平台,特点是在NiFe2O4纳米管和h‑BN上,分别引入Envision复合物和lucigenin。NiFe2O4纳米管不仅可以承载大量Envision复合物,而且能够催化析氧反应过程释放氧气,引发2‑(二丁基氨基)乙醇的阳极发光;h‑BN可以固载大量lucigenin并且保持其在碱性条件下的发光稳定性;富含辣根过氧化物酶的Envision复合物催化H2O2产生超氧自由基,同时增强两种发光信号。因此,所制得的比率免疫传感器,具有灵敏度高、检测限低等优点,用于人附睾蛋白4的检测,在早期卵巢癌诊断和监控方面具有较为重要的价值。
中冶有色为您提供最新的福建福州有色金属化学分析技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!